NEXT Lab

NXM1009

Semiconductor Development Group

High Sensitivity 8-CH Capacitive Touch Switch

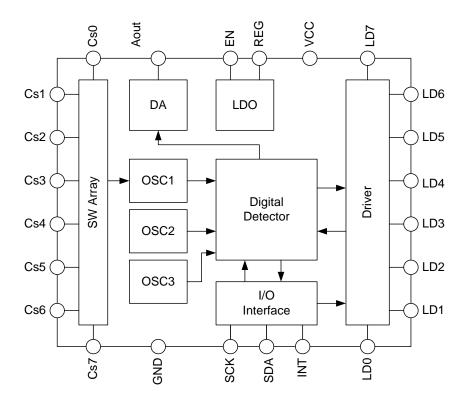
General Description

The NXM1009 is an auto calibration High sensitivity 8 channel Capacitive touch switch It includes 2 oscillator and frequency shift detector.

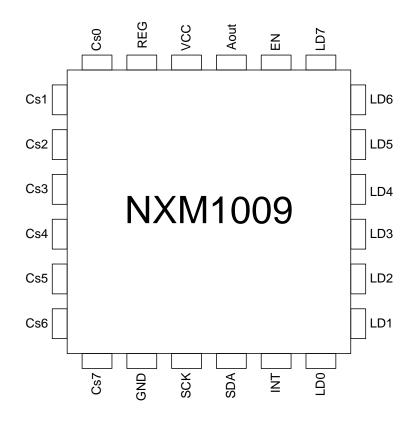
It has very strong immunity against external noise or noisy environment with high performance Analog circuit and Adaptive Digital algorithm

Feature

- Supply voltage: 1.6V ~ 3.6V
- Embedded Simple LDO
- Embedded POR and Enable External Reset control
- Direct 4Mode LED Display
- 4level LED Dimming
- I/O Interface; Pararrel / IIC / Aout
- Single/Multi option
- Operation mode selectable

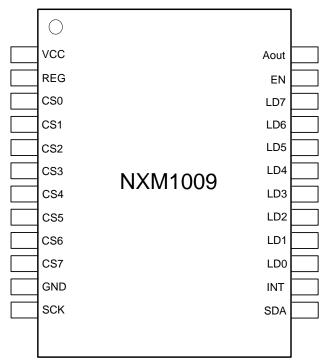

Auto mode: BF mode ↔ BS mode / BF mode ↔ Sleep Mode Direct mode (with MCU): BF mode / BS mode / Sleep mode

- Enable Individual adjustment each channel sensitivity: 1 of 8 Mode
- Very low frequency Harmonic Noise elimination
- · Fixed frequency oscillation at any supply voltage
- Very low current consumption
- · 1 Custom bits at IIC Bus
- · A few external parts
- · Auto digital calibration
- Package: 24-QFN, 24-TSSOP


Application

- Mobile application
- Mini/Micro Audio system
- · Membrane Switch replacement
- · Sealed control panel
- · Door key
- Flat TV

Block Diagram


Terminal assignment (24QFN)

Pin description (24QFN)

Pin Name	Pin No.	I/O	Description
CS1	1	I	Channel 1 Capacitor sensor input
CS2	2	I	Channel 2 Capacitor sensor input
CS3	3	I	Channel 3 Capacitor sensor input
CS4	4	I	Channel 4 Capacitor sensor input
CS5	5	I	Channel 5 Capacitor sensor input
CS6	6	I	Channel 6 Capacitor sensor input
CS7	7	I	Channel 7 Capacitor sensor input
GND	8	S	Ground
SCK	9	I	Serial Clock Line
SDA	10	I/O	Serial data
INT	11	0	Interrupt
LD0	12	0	Channel 0 Output
LD1	13	0	Channel 1 Output
LD2	14	0	Channel 2 Output
LD3	15	0	Channel 3 Output
LD4	16	0	Channel 4 Output
LD5	17	0	Channel 5 Output
LD6	18	0	Channel 6 Output
LD7	19	0	Channel 7 Output
EN	20	-	Enable (Sensitivity set input when stand alone)
Aout	21	0	DA output
VCC	22	S	Power Supply
REG	23	0	Regulator output
CS0	24	l	Channel 0 Capacitor sensor input

Terminal assignment (24TSSOP)

Pin description (24TSSOP)

Pin Name	Pin No.	I/O	Description
VCC	1	S	Power Supply
REG	2	0	Regulator output
CS0	3	I	Channel 0 Capacitor sensor input
CS1	4	I	Channel 1 Capacitor sensor input
CS2	5	I	Channel 2 Capacitor sensor input
CS3	6	I	Channel 3 Capacitor sensor input
CS4	7	I	Channel 4 Capacitor sensor input
CS5	8	I	Channel 5 Capacitor sensor input
CS6	9	Ι	Channel 6 Capacitor sensor input
CS7	10	Ι	Channel 7 Capacitor sensor input
GND	11	S	Ground
SCK	12	I	Serial Clock Line
SDA	13	I/O	Serial data
INT	14	0	Interrupt
LD0	15	0	Channel 0 Output
LD1	16	0	Channel 1 Output
LD2	17	0	Channel 2 Output

LD3	18	0	Channel 3 Output
LD4	19	0	Channel 4 Output
LD5	20	0	Channel 5 Output
LD6	21	0	Channel 6 Output
LD7	22	0	Channel 7 Output
EN	23	I	Enable (Sensitivity set input when stand alone)
Aout	24	0	DA output

Electro-static Discharge (ESD)

Pin	Mode Value		Unit
loout pip	НВМ	8000	V
Input pin	MM	500	V
Othorpino	НВМ	2000	V
Other pins	MM	200	V

Maximum Absolute ratings

Parameter	Symbol	Value	Unit
Supply Voltage	Vccmax	−0.3 ~ 3.6	V
Maximum Pin Voltage (Normal)	Vpnmax	-0.3 ∼ Vdd+0.3	V
Maximum Pin Voltage (Open Collector)	Vpomax	-0.3 ~ 3.6	V
Storage temperature	Tstg	−45 ~ 150	Ç
Operating temperature	Topr	−40 ~ 85	°C
Power Dissipation	Pdmax	800	mW

Electrical Characteristics

VCC = 3.3V, Ta=25.0°C Unless otherwise noted

Characteristics	Symbo	Condition		Value			
Characteristics	Symbo	Condition	min	typ	max	Unit	
Operating voltage range	VDD	_	1.6	-	3.6	V	
		BF Mode	_	140	_		
Current Consumption	ldd	BS Mode	_	30	_	uA	
·		Sleep Mode	_	3.0	1		
Sense Oscillation Frequency	Fs	Any Vdd voltage	_	4.0	_	MHz	
Open Collector output maximum sink current	Isink	Vout=0.4V Default setting	_	10	_	mA	
Minimum Detective capacitance Difference	ΔC	_	_	-	0.01	рF	
Self calibration time	Tcall	After system reset	_	25.6	_	ms	
		BF Mode	_	3.2	_		
Burst Sense Oscillation Period	Тр	BS Mode	_	24.0	-	ms	
Seemanon Femore		Sleep Mode	_	1000	_		
Response Time 1	Tr1	BF Mode	_	12.8	_	ms	
Response Time 2	Tr2	BS Mode	_	96.0	_	ms	

Application Note

- Parameter setting

NXM1009X Provide many customer functions.

All function is selectable by Serial interface

And when Stand alone applications without controller,

The Customer parameter can be selected by external parts.

- Power Sequence

When NXM1009 is supplied with VCC initially, there is a possibility of malfunction because of unstable power supply(VCC). We recommend that you should soft-reset NXM1009 after setting sensitivity and operation mode. Reset Command is ADD:10h, Data:04h and Reset clear command is ADD:10h, Data:00h.

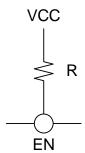
- Stand alone applications

(All customer parameter is re-settable by Serial interface,

even if the parameter was set by external parts.

When you connect parallel output (LD0 to LD7) to u-com,

You should use normal Input of u-com to set parameter by external parts normally.)

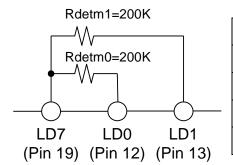

* Sensitivity setting

NXM1009X detect external resister between VCC and EN when power on,

And according to the resister value,

The Capacitance detect sensitivity is determined.

See below table.


Resister Value	<10K	20K	30K	40K	50K	60K	70K	80K <
Sensitivity Level	1	2	3	4	5	6	7	8
Description	← High	Sensitiv	ity	_	→		Low Sen	sitivity

When Sensitivity level 4,

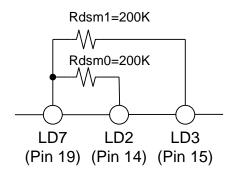
10mm*10mm Sense pad is detectable 5mm acrylic isolation.

* Internal detect mode (Frequency) setting

NXM1009X has 4 internal system frequency, f1, f2, f3 and f4. The f4 is the fasted and f1 is the slowest. And the Internal detect mode (Frequency) is selectable by resister addition like left figure.

Rdetm1	Rdetm0	Detect mode
0	0	about fixed f3
0	1	about fixed f4
1	0	Reserved
1	1	Reserved

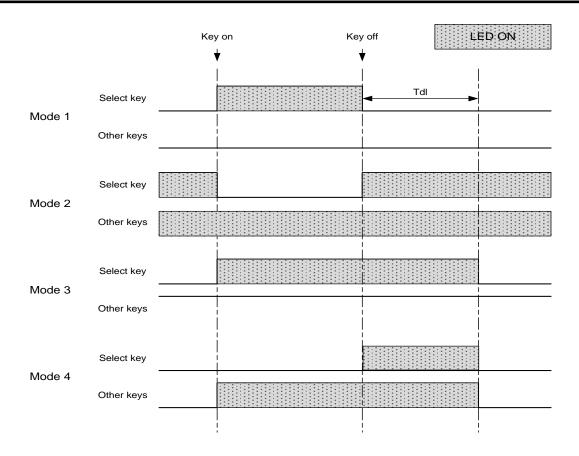
(If there be resister then 1, None resister then 0)


The default value (None resister) is fixed f3 operation.

* Display mode setting

NXM1009X has 4 Display modes,

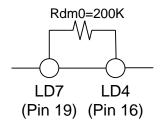
Whitch are "Select key on mode", "All on and select key off mode"


"Select key on and delayed off mode", "Key select all on & select key off and delayed All off mode"

The display mode is selectable by resister addition like left figure. (If there be resister then 1, None resister then 0)

Rdsm1	Rdsm0	Display mode
0	0	Mode 1
0	1	Mode 2
1	0	Mode 3
1	1	Mode 4

Mode	Display mode
Mode 1	Select key on mode
Mode 2	All on and select key off mode
Mode 3	Select key on and delayed off mode
Mode 4	Select key off & other keys all On and delayed All off mode



* Detect speed setting

NXM1009X has 3 Detect speed modes,

When stand alone application, 2 mode is provided

One is FS mode, other is SL mode,

The display speed is selectable by resister addition like left figure. (If there be resister then 1, None resister then 0)

Rdm0	Detect speed mode
0	FS mode (BS \longleftrightarrow BF)
1	SL mode (Sleep ←→ BF)

If FS mode, NXM1009X stay BS mode, and key detect, it is changed BF mode.

And SL mode, NXM1009 stay Sleep mode, and key detect, It is changed BF mode.

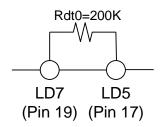
At any mode, if Key is detected within 4sec after last key released,

the mode is not changed.

In other word, after 4sec from Key released, it is return BS mode (when FS mode), or Sleep mode (when SL mode)

If BF mode is selected by controller, (It can't be selected in Stand alone application) The NXM1009 operates BF mode always

* There are 3 mode of operation depending the current consumption.
FF mode operates always on the BS mode. Although It consumes current much, key detection time is the shortest.


FS mode operates normally on the BS mode. After detecting key, operation mode is converted to the BF mode. Current consumption is smaller the FF mode.

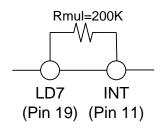
SL mode operates normally Sleep mode. After detecting key, operation mode is converted to the BF mode. Current consumption is the smallest.

There are 3 mode of key scan mode, key scan period is different each other(refer 4p)

* Display Delay time setting

When Delayed display after key action (Display mode 2 & 4) It can be setting

delay time (Tdl). The delay time is selectable by resister addition like left figure. (If there be resister then 1, None resister then 0)

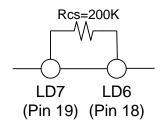

Rdt0	Delay time
0	2 sec
1	4 sec

(This Function is apply only in single mode, because of embedded only one counter.)

* Single/Multi setting

There is 2 mode in NXM1009X,

Single mode is only first 1 select mode, multi mode is detect key all select mode.


The Single/Multi mode is selectable by resister addition like left figure.

(If there be resister then 1, None resister then 0)

Rmul0	Mode
0	Single mode
1	Multi mode

- Register Map in serial setting

* Write slave address is b"100111C0"

C is custom bit

it is selectable by resister addition like left figure. (If there be resister then 1. None resister then 0)

Rcs	IIC Slave address (write)
0	b"10011100"(Register Map1) &
	b"10111100" (Register Map2)
1	b"10011110"(Register Map1) &
	b"10111110"(Register Map2, Read-Only)

* Register Map1

Sub address	Data [7:0]							
0X00					MTsng	DRTmd	OPRm	d[1:0]
0X01				OPRIe	d[1:0]		ILED[2:0]	
0X02					OSCm	d[1:0]	ONtm	[1:0]
0X03		1ch-9	1ch-Sensitivity [2:0]			2ch-9	Sensitivity	[2:0]
0X04		3ch-Sensitivity [2:0]				4ch-9	Sensitivity	[2:0]
0X05		5ch-Sensitivity [2:0]				6ch-9	Sensitivity	[2:0]
0X06		7ch-Sensitivity [2:0] 8ch-Sensitivity [2:0]				[2:0]		
0X08		8-CH Output Data[7:0](Read-Only)						
0X10		SRst						

Register is enable to read on high status of INT(PIN11)

* Register Map2

Sub address	Data [7:0]
0X00	1-CH Counter Value Register[7:0]
0X01	1-CH Counter Value Register[10:8]
0X02	2-CH Counter Value Register[7:0]
0X03	2-CH Counter Value Register[10:8]
0X04	3-CH Counter Value Register[7:0]
0X05	3-CH Counter Value Register[10:8]
0X06	4-CH Counter Value Register[7:0]
0X07	4-CH Counter Value Register[10:8]
0X08	5-CH Counter Value Register[7:0]
0X09	5-CH Counter Value Register[10:8]
0X0A	6-CH Counter Value Register[7:0]
0X0B	6-CH Counter Value Register[10:8]
0X0C	7-CH Counter Value Register[7:0]
0X0D	7-CH Counter Value Register[10:8]
0X0E	8-CH Counter Value Register[7:0]
0X0F	8-CH Counter Value Register[10:8]

* MTsng: Single or Multi option

Value	Operation
0	Single mode
1	Multi mode

* DRTmd & OPRmd[1:0] : Operating mode

DRTmd	OPRmd1	OPRmd0	Operation
0	0	0	BF mode always
0	0	1	FS mode (BS ←→ BF)
0	1	0	SL mode (Sleep ←→ BF)
0	1	1	NU
1	0	0	BF mode always
1	0	1	BS mode always
1	1	0	Sleep mode always
1	1	1	NU

* OPRled[1:0] : LED Display setting

OPRled1	OPRled0	Operation
0	0	Select key on mode
0	1	All on and select key off mode
1	0	Select key on and delayed off mode
1	1	Select key off & other keys all On and delayed All off mode

* ILED[2:0] : LED Dimming

ILEDX	ILEDX	ILEDX	Operation
0	0	0	ILED = Level 0
0	0	1	ILED = Level 1
0	1	1	ILED = Level 2
1	1	1	ILED = Level 3

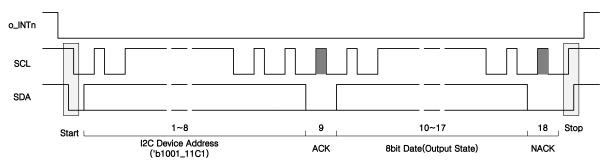
* OSCmd[1:0] : Detect mode (Frequency) setting

OSCmd1	OSCmd0	Operation
0	0	about fixed f3
0	1	about fixed f4
1	0	Reserved
1	1	Reserved

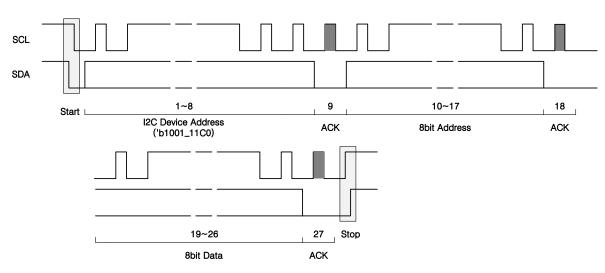
* ONtm[1:0] : Display Delay time setting

		, ,
ONtm1	Ontm0	Operation
0	0	about 1 sec
0	1	about 2 sec
1	0	about 3 sec
1	1	about 4 sec

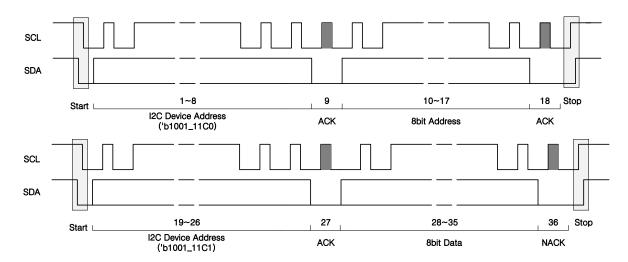
* Sensitivity [2:0] : Each channel sensitivity setting


D2	D1	D0	Sensitivity	Operation
0	0	0	Level 1	High Sensitivity
0	0	1	Level 2	
0	1	0	Level 3	
0	1	1	Level 4	Detectable 10mm*10mm PAD in 5mm acrylic isolation.
1	0	0	Level 5	
1	0	1	Level 6	
1	1	0	Level 7	
1	1	1	Level 8	Low sensitivity

* SRst : Soft Reset


Value	Operation
0	Normal status
1	Soft Reset status

* Read Detect key


The slave address is b"100111C1" (C is custom bit)

* Write Register Data through I2c Interface

* Read Register Data through I2c Interface

* Read DAout (Pin23)

If there is ADC in u-com,

It is enable data communication with only 1 line.

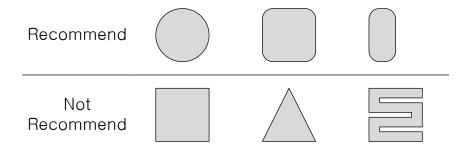
This pin is support that operation.

NXM1009 has simple DAC and out different voltage according to pushed key.

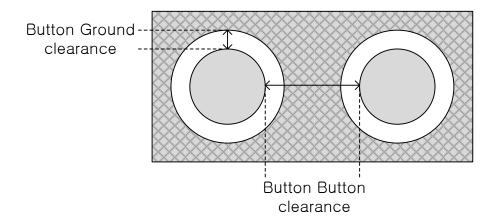
Of course this function is operated only in Single mode.

When all keys are released, Aout = Vsupply,

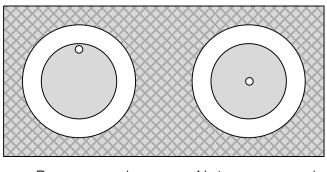
and if some key is pushed, the voltage of Aout is like below


Tfmax = 20us, Trmax = 5us Vsupply 7/8*Vsupply -6/8+Vsupply -5/8*Vsupply -4/8*Vsupply -3/8*Vsupply -2/8*Vsupply -1/8 *Vsupply -Vss All Key 8 All Key 5 All Key 1 Key 6 All Activate release Activate release Activate release Activate release

- 15 -


Layout Guidelines and best Practices

SI. No.	Category	Min	Max	Recommendations / Remarks	
1	Button Shape			Solid round pattern, Round with LED hole, rectangle with round corners	
2	Button Size	2mm	20mm	Recommend: Minimum = 5mm	
3	Button-Button spacing	0.1mm		Recommend: Minimum = 0.5mm	
4	Button Ground Clearance	0.1mm	2mm	Recommend: Minimum = 0.5mm	
5	Ground flood - top layer			Hatched ground 7 mil trace and 45 mill grid (15% filling)	
6	Ground flood - bottom layer			Hatched ground 7 mil trace and 70 mil grid (10% filling)	
7	Trace Length from Sensor pad to device pin			The length should be short as possible. Recommend: Length < 10cm	
8	Trace Width	0.17mm	0.2mm		
9	Trace Routing			Traces should be routed on the non button side. If any non CapSense trace crosses CapSense trace, ensure that intersection is orthogonal.	
10	Via Position for the sensors			Via should be placed near the edge of the button pad to reduce trace length thereby increasing sensitivity.	
11	Via Hole Size for sensor traces			10 mil	
12	Number of via on sensor trace	1	2	1	
13	Cap Sense series resistor placement		10mm	Place Cap Sense series resistors close to the device for noise suppression. Cap sense resistors have highest priority, place them first.	
14	Distance between Any Cap Sense trace to Ground	10mil	20mil	20mil	
15	Device placement			Mount the Device on the layer opposite to button. The Cap Sense trace length between the Device and buttons should be minimum	


Cap Sence Button shapes

Button Layout Design

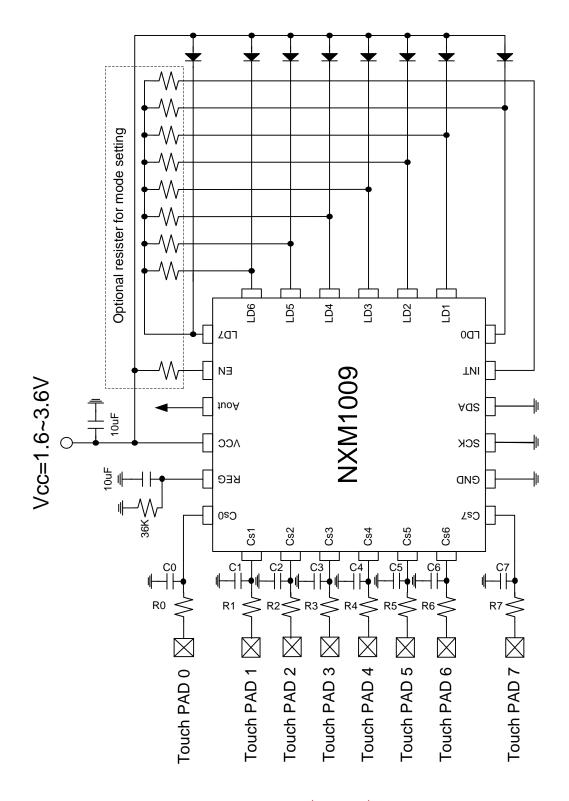
Recommended via-hole Placement

Recommend

Not recommend

Application Circuit

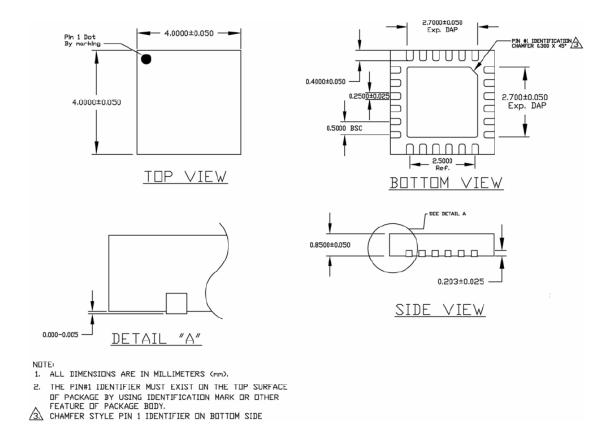
- With u-Controller (With IIC interface)

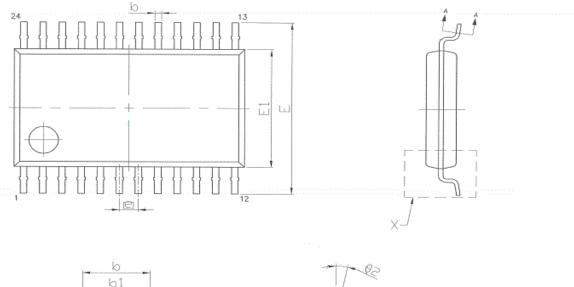

* If NXM1009 is single mode, unused input pins(CS input) should be connected to GND through capacitor 10pF.

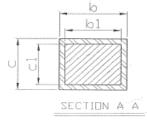
(unused input pin capacitor value is 5pF larger than used input pin capacitor value)

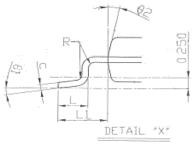
- ★ we recommend R0~R7 is from 1.6k to 2.4k and C0~C7 is less than 5pF.
- * R0~R7 and C0~C7 are not affected by noise, as closer to the chip.

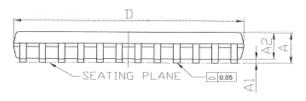
Application Circuit


- Stand alone (Using Aout or Parallel)


 \divideontimes If NXM1009 is single mode, unused input pins(CS input) should be connected to GND through capacitor 10pF.


(unused input pin capacitor value is 5pF larger than used input pin capacitor value)


Package Outline (24QFN)



Package Outline (24TSSOP)

SYMBOL	DIMENSION (MM)			DIMENSION (MIL)		
SINDUL	MIN.	NOM.	MAX.	MIN.	N□M.	MAX.
Α	-	-	1.20	-	-	47.0
A1	0.00	-	0.15	0.0		5.9
A2	0.80	1.00	1.05	31.5	39.4	41,3
b	0.19	-	0.30	7.5	-	11.8
b1	0.19	0.22	0.25	7.5	8.7	9.8
С	0.09	-	0.20	3.5	-	7.9
c1	0.09		0.16	3.5		6.3
D	7.70	7.80	7.90	303.1	307.1	311.0
E	6.30	6,40	6.50	248.0	252.0	255.9
E1	4.30	4.40	4,50	169.3	173,2	177.2
(e)	0.65 BSC			25.6 BSC		
L	0.45	0.60	0.75	17,7	53.6	29.5
L1	1.00 REF			39.4 REF		
R	0.127	-	-	5.0	-	-
θ1	0*		8°	0*	-	8*
62	12° REF			12* REF		